

IPM Photocoupler

Product Description

The EMD2A481 fast speed photocoupler contains a LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.

Applications

- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Motor Drives
- Industrial Inverters

Features

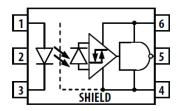
- Totem pole output inverter logic type
- Truth Table Guaranteed: VCC from 4.5V to 30V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis
- Data rate: 5Mbps (typ.)

Safety approved

- UL1577 recognized with 3750 Vrms for 1 minute for EMD2A481-SK and 5000 Vrms for 1 minute for EMD2A481-SL Certificate No. E529603
- IEC/EN/DIN EN 60747-5-5 Approved

 VIORM = 891 Vpeak for EMD2A481-SK

 VIORM = 1140 Vpeak for EMD2A481-SL


 Certificate No. 40055846
- CQC approved: GB4943.1-2011Certificate No. CQC22001358589

SCHEMATIC	PIN DEFINITION	PACKAGE
PULSE GEN. t ₁ = t ₂ = 5 ns f = 100 kHz 10% DUTY CYCLE V ₀ = 5V Z ₀ = 50Ω NODE R ₁ 120 pF *0.1 μF BYPASS	1.Anode 2.NC 3.Cathode 4.GND 5.VO 6.Vcc	

Publication Date: Mar. 2024 Revision: 1.0 1/12

Connection Diagram

Order Information

EMD2A481-00S###%FR1

EMD2A Photo coupler product series

481 Part Number

00 Internal control Code

S### SK06: LSOP-6 Package 7mm clearance

SL06: LSOP-6 Package 8mm clearance

% E: RoHS & Halogen free package with VDE

N: RoHS & Halogen free package

F -40 to 110°C temperature rating

R1 Packing in Tape & Reel

Order, Mark & Packing Information

Package	Product ID		Mark	Packing
	EMD2A481-00SK06EFR1 EMD2A481-00SL06EFR1	481 HV	E : ESMT YY : Date code (Year) WW : Date code (Week)	Tape &
LSOP-6	EMD2A481-00SK06NFR1 EMD2A481-00SL06NFR1	481 H	481 : Part Number H : Internal Tracking Code V : VDE ID Option	Reel 3Kpcs

Publication Date: Mar. 2024 Revision: 1.0 **2/12**

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	EMD2A481-SK	EMD2A481-SL	Unit	
Climatic Classification		55/100/21	55/100/21		
Pollution Degree (DIN VDE 0110/1.89)		2	2		
Maximum Working Insulation Voltage	Viorm	891	1140	Vpeak	
Input to Output Test Voltage, Method b (Note 1)					
VIORM x 1.875=Vpr, 100% Production Test	VPR	1671	2137	Vpeak	
With tm=1sec, Partial discharge < 5pC					
Input to Output Test Voltage, Method a (Note 1)					
VIORM x 1.6=Vpr, 100% Production Test	VPR	1426	1824	Vpeak	
With t _m =10sec, Partial discharge < 5pC					
Highest Allowable Overvoltage	VIOTM	6000	8000	Vpeak	
(Transient Overvoltage tini = 60sec)	VIOIM	8000	8000	V peak	
Safety-limiting values – maximum values allowed in the event of a failure					
Case Temperature	Ts	175	175	${\mathcal C}$	
Input Current	IS, INPUT	150	150	mA	
Output Power	Ps, оитрит	600	600	mW	
Insulation Resistance at TS, V10 = 500 V	Rs	>109	>109	Ω	

Note 1: Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A accordance with CECC 00802.

Insulation and Safety-Related Specifications

Parameter	Symbol	EMI	D2A	Unit	Conditions
raidiffelei	Symbol	481-SK	481-SL	Offin	Conditions
Minimum External Air Gap (External	1 (101)	7.0	8.0		Measured from input terminals to output
Clearance)	L(101)	7.0	6.0	mm	terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8.0	8.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	>175	>	DIN IEC 112/VDE 0303 Part 1.

Publication Date: Mar. 2024
Revision: 1.0 3/12

Elite Semiconductor Microelectronics Technology Inc.

Truth Table

LED	Vcc-Vss (Turn-ON)
LED	OUT
ON	L
OFF	Н

Note 2: A 0.1µF bypass capacitor must be connected between Pin 4 and 6.

Absolute Maximum Ratings (Ta = 25°C unless otherwise specified)

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Tstg	-55	125	°C
Operating Temperature	Topr	-40	110	°C
Output IC Junction Temperature	TJ	-	125	°C
Average Forward Input Current	IF	-	20	mA
Reverse Input Voltage	VR	-	5	V
Output Collector Current	IO		50	mA
Supply Voltage	VCC	0	35	V
Output Collector Voltage	VO	-0.5	Vcc	V
Total Package Power Dissipation	PT	-	145	mW
Lead Solder Temperature	Tsol	-	260	°C

Note 3: A ceramic capacitor (0.1 µF) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Recommended Operation Condition

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	110	°C
Supply Voltage	Vcc	4.5	30	٧
Input Current (ON) (Note 4)	I _{F(ON)}	1.6	5	mA
Input Voltage (OFF) (Note 5)	V _{F(OFF)}		0.8	٧

Note 4: Detector requires a VCC of 4.5 V or higher for stable operation as output might be unstable if VCC is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.

Note 5: The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guard band.

Publication Date: Mar. 2024 Revision: 1.0 4/12

Electrical Characteristics

All Typical values at T_A = 25°C, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
		Inp	ut Chara	cteristic	S	
Input Forward Voltage	VF	1.6	2.0	2.4	V	IF=10mA
Input Forward Voltage Temperature Coefficient	ΔVF/ ΔΤ	-	-1.237	-	mV/°C	IF=10mA
Input Reverse Voltage	BVR	5	-	-	V	IR = 10μA
Input Threshold Current (Low to High)	IFLH	-	0.25	1.5	mA	VCC = 30 V, VO< 5V
Input Threshold Voltage (High to Low)	VFHL	0.8	-	-	٧	VCC = 30 V, VO> 5V
Input Capacitance (Note 6)	CIN	-	60	-	рF	f = 1 MHz, VF = 0 V
		Outp	out Char	acteristic	s	
High Level Supply Current	ICCH	-	-	3.0	mA	VCC = 5.5 V, VF = 0V, IO = 0 mA
riigii Level 30ppiy Colletti	ICCII		1.9	3.0		VCC = 30 V, VF = 0V, IO = 0 mA
Low Level Supply Current	ICCL	-	-	3.0	mA	VCC = 5.5 V, IF = 5 mA, IO = 0 mA
LOW LOVE SUPPLY CONTENT	ICCL		2.0	3.0		VCC = 30 V, IF = 5 mA, IO = 0 mA
High level output current		-	-	-100		VCC = 5.5V, VF = 0V , VO = GND
(Note 7)	IOH	1	-	-200	mA	VCC = 20V, VF = 0V, VO = GND
Low level output current		100	-	-		VO =VCC = 5.5V, IF = 5mA
(Note 7)	IOL	200	-	-	mA	VO =VCC = 20V, IF = 5mA
High level output voltage	VOH	VCC- 0.5	VCC- 0.05	-	V	IOL = -6.5mA
Low level output voltage	VOL	-	0.09	0.5	٧	IOL = 6.5mA

Note 6: Input capacitance is measured between pin 1 and pin 3.

Note 7: Duration of output short circuit time should not exceed 10 μs .

Switching Specification

All Typical values at TA = 25°C, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition			
Propagation Delay Time to Output High Level (Note 8)	t _{PLH}	-	110	220					
Propagation Delay Time to Output Low Level (Note 8)	† _{PHL}	-	90	220	ns	f = 10kHz.			
Pulse Width Distortion (Note 9)	PWD	-	20	120		ns	ns	ns Du	Duty Cycle = 50%
Propagation Delay Difference Between Any Two Parts (Note 10)	PDD († _{PHL} - † _{PLH})	-200	ı	+200		V _{CC} = 30V			
Output Rise Time (10 to 90%)	† _r	-	6	-					
Output Fall Time (90 to 10%)	† _f	-	7	-					
Common mode transient immunity at high level output (Note 11)	CM+	20	-	-	kV/μs	V _F =0 V V _{CC} = 5V, T _A = 25 °C, V _{CM} = 1.5KV			
Common mode transient immunity at low level output (Note 11)	CML	20	-	-	kV/µs	I _F =4mA V _{CC} = 5V, T _A = 25 °C, V _{CM} = 1.5KV			

Note 8: The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.

Note 9 Pulse Width Distortion (PWD) is defined as | tPHL - tPLH | for any given device.

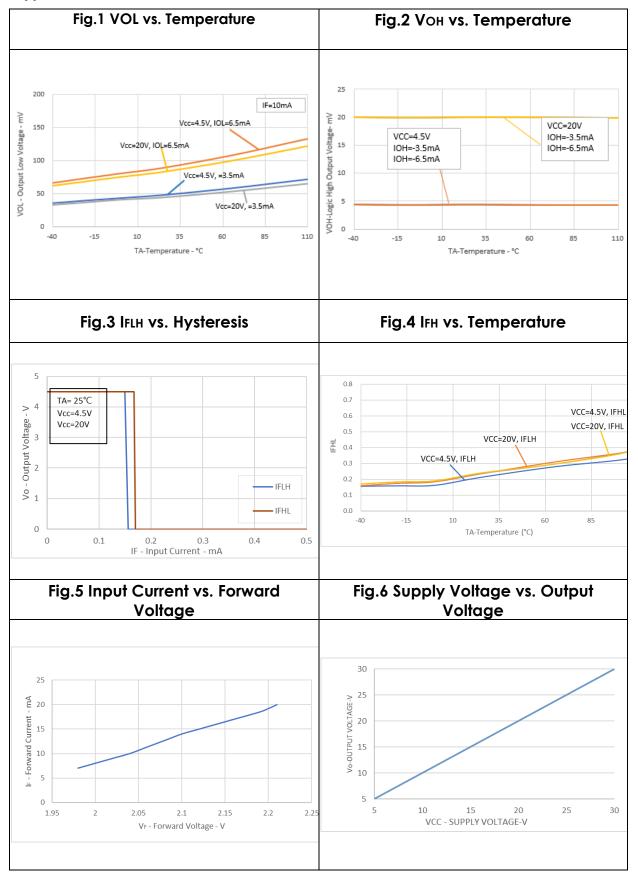
Note 10: The difference of tPLH and tPHL between any two devices under the same test condition.

Note 11: CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, VO > 2.0 V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, VO < 0.8 V. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.

Isolation characteristic

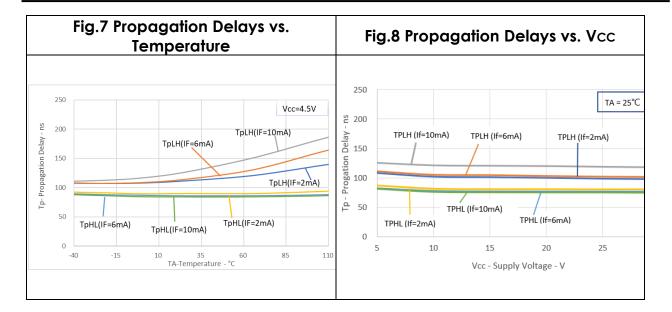
All Typical values at $T_A = 25$ °C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Device	Min.	Тур.	Max.	Unit	Test Condition
Withstand Insulation Test Voltage	V _{ISO}	EMD2A481-SK	5000	-	-	V	RH ≤ 40%-60%, t = 1 min, T _A = 25 °C
(Note 12, 13)		EMD2A481-SL					1 = 1111111111111111111111111111111111
Input-Output Resistance (Note 12)	R _{I-O}	-	ı	10 ¹²	ı	Ω	V _{I-O} = 500V DC


Note 12: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

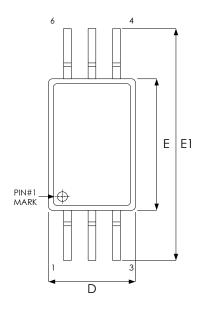
Note 13: According to UL1577, each photo coupler is tested by applying an insulation test voltage 6000VRMS for one second.

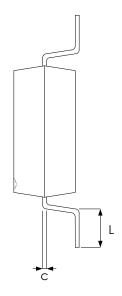
Publication Date: Mar. 2024
Revision: 1.0 6/12



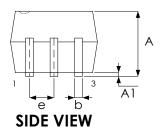
Typical Performance Curves & Test Circuits

Publication Date: Mar. 2024 Revision: 1.0 7/12



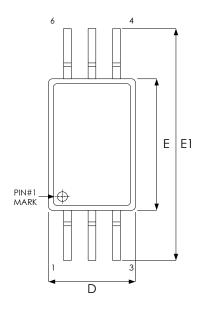


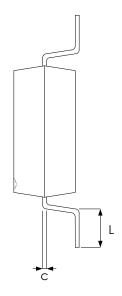
Publication Date: Mar. 2024 Revision: 1.0 **8/12**


Package Outline Drawing L-SOP 6L (277mil, 7mm clearance)

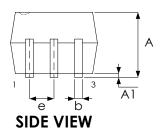
TOP VIEW

SIDE VIEW




Symbol	Dimension in mm			
Syllibol	Min.	Max.		
А	1.70	2.30		
A1	0.10	0.30		
ь	0.30	0.50		
С	0.20	0.30		
D	4.20	4.80		
Е	6.51	7.11		
E1	9.40	10.00		
е	1.27 BSC			
L	0.70	1.20		

Publication Date: Mar. 2024 Revision: 1.0 9/12


Package Outline Drawing L-SOP 6L (277mil, 8mm clearance)

TOP VIEW

SIDE VIEW

Cymbol	Dimension in mm			
Symbol	Min.	Max.		
А	1.70	2.30		
A1	0.10	0.30		
b	0.30	0.50		
С	0.20	0.30		
D	4.20	4.80		
Е	6.51	7.11		
E1	11.20	11.80		
е	1.27 BSC			
L	0.50	1.00		

Publication Date: Mar. 2024 Revision: 1.0 10/12

Revision History

Revision	Date	Description
0.1	2023.02.17	Preliminary version
0.2	2023.08.24	Update: Insulation Characteristics (Page3) AMR unit (Page4) Note7 (Page5) CMH CML Test condition (Page6)
1.0	2024.03.05	1.Revise IOH/IOL spec 2.Update POD 3. Remove "preliminary" to V1.0

Publication Date: Mar. 2024 Revision: 1.0 11/12

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Mar. 2024 Revision: 1.0 12/12