

High Speed 10M bit/s Photocoupler

Product Description

The EMD2A611 is an optically coupled gate that combines a light emitting diode and an integrated high gain photo detector. The output of the detector IC is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 10,000 V/µs for the EMD2A611.

This unique design provides maximum AC and DC circuit isolation while achieving TTL compatibility. The optocoupler AC and DC operational parameters are guaranteed from -40°C to +110°C, allowing trouble-free system performance.

The EMD2A611 is suitable for high-speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

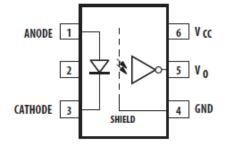
Features

- 10 kV/µs minimum Common Mode
 Rejection (CMR) at VCM = 1000V
- High speed: 10M bit/s typical

- VCC range: 4.5~5.5V
- LSTTL/TTL compatible
- Inverter logic type
- Low input current capability: 5 mA
- Guaranteed ac and dc performance over -40°C ~ +110°C.

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Isolation of high speed logic systems


Safety approved

- UL1577 recognized with 3750 Vrms for 1 minute for EMD2A611-SK and 5000 Vrms for 1 minute for EMD2A611-SL Certificate No. E529603
- IEC/EN/DIN EN 60747-5-5 Approved
 V_{IORM} = 891 Vpeak for EMD2A611-SK
 V_{IORM} = 1140 Vpeak for EMD2A611-SL
 Certificate No. 40055846
- CQC approved: GB4943.1-2011
 Certificate No. CQC22001358589

SCHEMATIC	PIN DEFINITION	PACKAGE
V _t V _t	1.Anode 2.NC 3.Cathode 4.GND 5.VO 6.Vcc	

Connection Diagram

Order Information

EMD2A61	EMD2A611-00S###%FR1				
00	Internal control Code				
S###	SK06: LSOP-6 Package 7mm clearance				
	SL06: LSOP-6 Package 8mm clearance				
%	E: RoHS & Halogen free package with VDE				
	N: RoHS & Halogen free package				
F	-40 to 110°C temperature rating				
R1	Packing in Tape & Reel				

Order, Mark & Packing Information

Package	Product ID	Mark Pac			
	EMD2A611-00SK06EFR1 EMD2A611-00SL06EFR1	EYYWW 611 HV	E : ESMT YY : Date code (Year) WW : Date code (Week)	Tape &	
LSOP-6	EMD2A611-00SK06NFR1 EMD2A611-00SL06NFR1	EYYWW 611 H	611 : Part Number H : Internal Tracking Code V : VDE Option	Reel 3Kpcs	

Parameter Symbol Min Max Unit Storage Temperature -55 125 °C Tstg °C Operating Temperature Topr -40 110 IF Average Forward Input Current(Note 1) 20 mΑ V Reverse Input Voltage VR 5 _ Input Power Dissipation ΡI 45 mW --VCC 7 V Supply Voltage IO 50 Output Collector Current mΑ VO 7 V Output Collector Voltage -Output Collector Power Dissipation ΡI 85 mW Tsol 260 °C Lead Solder Temperature _

Absolute Maximum Ratings (Ta = 25°C unless otherwise specified)

Note 1: Peaking circuits may produce transient input currents up to 50 mA, 50-ns maximum pulse width, provided average current does not exceed 20 mA

Recommended Operation Condition

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-40	110	°C
Supply Voltage	VCC	4.5	5.5	V
Input Current High Level	IFLH	5	15	mA
Input Voltage Low Level	VFHL	-3.0	0.8	V
Fan Out (at RL = 1 KΩ)	Ν		5	TTL Loads
Output Pull-up Resistor	RL	330	4K	Ω

Output Power

Insulation Resistance at TS, VIO = 500 V

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	EMD2A611-SK	EMD2A611-SL	Unit
Climatic Classification		55/100/21	55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	2	
Maximum Working Insulation Voltage	VIORM	891	1140	Vpeak
Input to Output Test Voltage, Method b (Note 2) V _{IORM} x 1.875=V _{PR} , 100% Production Test With t _m =1sec, Partial discharge < 5pC	VPR	1671	2137	Vpeak
Input to Output Test Voltage, Method a (Note 2) VIORM x 1.6=VPR, 100% Production Test With tm=10sec, Partial discharge < 5pC	Vpr	1426	1824	Vpeak
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60sec)	VIOTM	6000	8000	Vpeak
Safety-limiting values – maximum vo	lues allowe	d in the event of	a failure	
Case Temperature	Ts	175	175	°C
Input Current	IS, INPUT	150	150	mA

Note 2 : Refer to the optocoupler section of th Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A accordance with CECC 00802.

Ps, output

Rs

600

>109

600

>109

mW

Ω

Insulation and Safety-Related Specifications

Parameter	Symbol	EMI	D2A	Unit	Conditions
raiameiei	зупрог	611-SK	611-SK 611-SL		Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.0	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8.0	8.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	>175	V	DIN IEC 112/VDE 0303 Part 1.

Electrical Characteristics (DC)

All Typical values at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
High Level Output Current	IOH	-	0.35	100	μA	VCC = 5.5V, VO = 5.5V, VF = 0.8V
Input Threshold Current	ITH	-	1.0	5.0	mA	VCC = 5.5V, VO = 0.6V, IOL > 13 mA
Low Level Output Voltage	VOL	-	0.25	0.6	V	VCC = 5.5V, IF = 5 mA, IOL(Sinking) = 13 mA
High Level Supply Current	ICCH	-	5.6	7.5	mA	VCC = 5.5V, IF = 0 mA,
Low Level Supply Current	ICCL	-	5.2	10.5	mA	VCC = 5.5V, IF = 10 mA
Input Forward Voltage	VF	1.6	2.0	2.4	\vee	IF = 10 mA
Input Reverse Breakdown Voltage	BVR	5	-	-	V	IR = 10 μA
Input Capacitance	CIN	-	60	-	pF	f = 1 MHz, VF = 0V

Switching Specification (AC)

All Typical values at TA = 25° C and V_{CC} = 5 V, IF = 7.5mA, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Propagation Delay Time to High Output Level	†PLH	-	60	75		
Propagation Delay Time to Low Output Level	†PHL	-	35	75		
Pulse Width Distortion	†PHL-†PLH	-	25	40	ns	VCC = 5V, IF = 7.5 mA,
Propagation Delay Skew	†PSK	-	-	50		RL = 350Ω, CL = 15 pF
Output Rise Time (10 to 90%)	tr	-	30	-		
Output Fall Time (90 to 10%)	tf	-	3	-		
Common mode transient immunity at high level output (Note 3)	CMH	10	15	-	kV/µs	VCC = 5V, IF = 0 mA, VO(MIN) = 2V,RL = 350Ω, VCM = 1000V
Common mode transient immunity at low level output (Note 4)	CML	10	15	-	kV/µs	VCC = 5V, IF = 7.5 mA, VO(MAX) = 0.8V,RL = 350Ω, VCM = 1000V

Note 3 : CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (that is, VOUT > 2.0V).

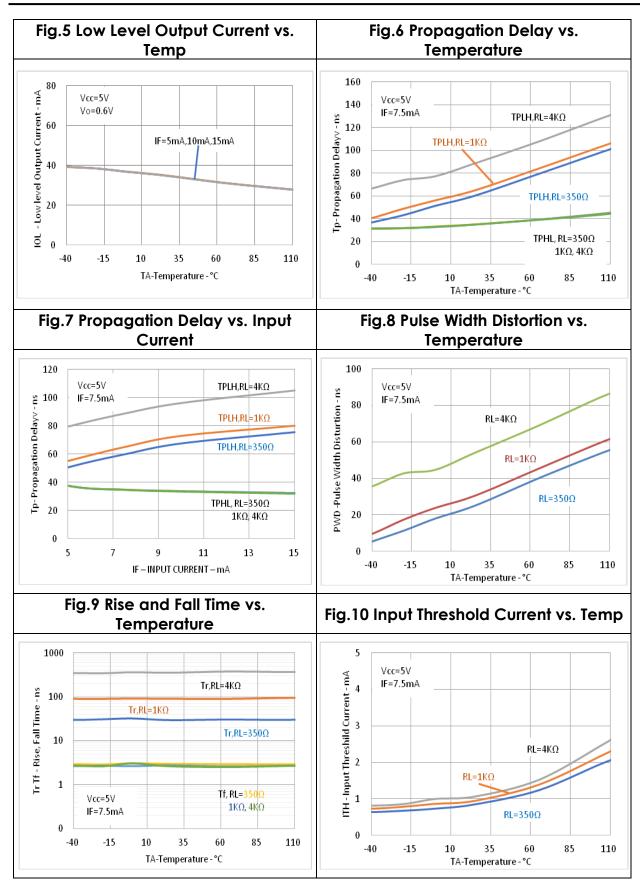
Note 4 : CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (that is, VOUT > 0.8V).

Isolation characteristic

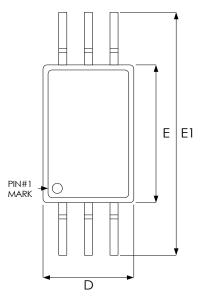
All Typical values at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

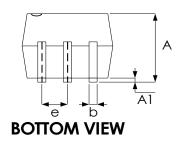
Parameter	Symbo	Device	Min.	Тур.	Max.	Unit	Test Condition
Withstand Insulation		EMD2A611-SK	5000			M	RH ≤ 40%-60%,
Test Voltage (Note 5, 6)	Viso	EMD2A611-SL	5000	-	-	V	t = 1min, T _A = 25 °C
Input-Output Resistance (Note 5)	R _{I-O}	-	-	1012	-	Ω	V _{I-O} = 500V DC

Note 5: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.


Note 6: According to UL1577, each photo coupler is tested by applying an insulation test voltage 6000VRMS for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge.

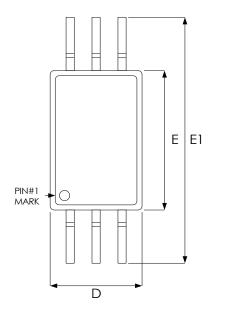
Typical Performance Curves & Test Circuits

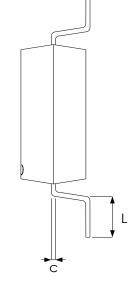

Elite Semiconductor Microelectronics Technology Inc.

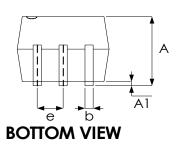

Package Outline Drawing L-SOP 6L (277mil, 7mm clearance)

TOP VIEW

SIDE VIEW


L


Sumbol	Dimension in mm				
Symbol	Min.	Max.			
А	1.70	2.30			
A1	0.10	0.30			
b	0.30	0.50			
С	0.20	0.30			
D	4.20	4.80			
Е	6.50	7.10			
E1	9.40	10.00			
е	1.27 BSC				
L	0.70	1.20			


Package Outline Drawing L-SOP 6L (277mil, 8mm clearance)

TOP VIEW

SIDE VIEW

Sumbol	Dimension in mm				
Symbol	Min.	Max.			
А	1.70	2.30			
A1	0.10	0.30			
b	0.30	0.50			
С	0.20	0.30			
D	4.20	4.80			
Е	6.51	7.11			
E1	11.20	11.80			
е	1.27 BSC				
L	0.50	1.00			

Elite Semiconductor Microelectronics Technology Inc.

Revision History

Revision	Date	Description
0.1	2023.02.03	Preliminary version
0.2	2023.06.01	Update: 1. High Speed Information (page1) 2. Insulation Characteristics (page4)

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.